Airbourne Equations

Fundamentals of Traffic Crash Reconstruction Daily-Shigemura-Daily: Chapter 15

Base units are lb, slugs, ft, ft/s. $g = 32.2 \text{ ft/sec}^2$. S is speed in mph. 1 mph = 1.466 fps. $v_0 = 1.466 \text{ mph}$ Motion of center of mass after rear wheels leave ground.

d is the distance where first contacted ground,

h is the vertical distance in ft of the COM displaced (+ lower, - higher) from ejection

θ is takeoff angle. Not usually known. **Approx as 45 deg**. 50 deg pedestrian goes over hood.

A launch angle of 45 deg gives the furthest range and the slowest launch velocity

m is the slope $\Delta h/\Delta d$, where h has the Sign/direction of g, + below ground, - above ground. $m = tan\theta$

Find Initial Velocity, v₀

Given d,θ, h pg 494)

$$v_0(\mathsf{d},\theta,\mathsf{h}) \coloneqq \frac{4.01 \cdot \mathsf{d}}{\cos(\theta \cdot \deg) \cdot \sqrt{\mathsf{h} + d \cdot \tan(\theta \cdot \deg)}} \qquad \qquad \text{divide both sides by 1.466 to get S, speed} \\ S_0(\mathsf{d},\theta,\mathsf{h}) \coloneqq \frac{2.73 \cdot \mathsf{d}}{\cos(\theta \cdot \deg) \cdot \sqrt{\mathsf{h} + d \cdot \tan(\theta \cdot \deg)}}$$

divide both sides by 1.466 to get S, speed in mph

$$S_0(d, \theta, h) := \frac{2.73 \cdot d}{\cos(\theta \cdot \deg) \cdot \sqrt{h + d \cdot \tan(\theta \cdot \deg)}}$$

Find Final Velocity, vf, Magnitude and Direction/Angle

$$\frac{\text{Given } \mathbf{v_0}, \mathbf{h} \text{ (DSD pg 497)}}{\mathbf{v_f}(\mathbf{v_0}, \mathbf{h}) \coloneqq \sqrt{\mathbf{v_0}^2 + 2\mathbf{g} \cdot \mathbf{h}}} \qquad \qquad \theta(\mathbf{v_x}, \mathbf{v_y}) \coloneqq \mathbf{acos}\left(\frac{\mathbf{v_x}}{\mathbf{v_y}}\right)$$

Find Maximum Height and Range at Maximum Height Given v₀ and angle (DSD pg 498)

Maximum height occurs when vertical velocity equals 0

$$\mathsf{h}_{\max} \! \! \left(\mathsf{v}_0, \theta \right) \coloneqq \frac{- \! \left(\mathsf{v}_0^{\; 2} \! \cdot \! \sin (\theta \cdot \mathsf{deg})^2 \right)}{2\mathsf{g}} \qquad \qquad \mathsf{d} \! \! \left(\mathsf{v}_0, \theta \right) \coloneqq \mathsf{v}_0^{\; 2} \! \sin (\theta \cdot \mathsf{deg}) \cdot \! \cos (\theta \cdot \mathsf{deg})$$

Find Maximum Range if Takeoff V is Known

$$\frac{\text{Given } \mathbf{v_0} \text{ h, and angle (DSD pg 499) Sign is - for landing heights above launch point}}{\text{d}(\mathbf{v_0}, \mathbf{h}, \boldsymbol{\theta}) := \frac{\mathbf{v_0}^2 \sin(2\theta \cdot \deg) + \mathrm{Sign} \sqrt{\mathbf{v_0}^2 \sin(2\theta \cdot \deg)^2 + 8g \cdot \mathbf{h} \cdot \cos(\theta \cdot \deg)^2}}{2g}$$

$$d(S_0, h, \theta) := \frac{{S_0}^2 \sin(2\theta \cdot \deg)}{30} + Sign \cdot 0.02277 S_0 \sqrt{2.15 S_0^2 \sin(2\theta \cdot \deg)^2 + 257.6 \cdot h \cdot \cos(\theta \cdot \deg)^2}$$

If Takeoff Angle = 0 **Special Cases:**

$$d(v_0, \theta) := Sign \cdot v_0 \cdot \sqrt{\frac{2h}{g}}$$

$$d(v_0, \theta) := \frac{v_0^2 \sin(2\theta \cdot \deg)}{g}$$

Find Angle that will Give Minimum Launch Velocity, S

$$V_{\min}(d,h) := \frac{1}{2} \operatorname{atan} \left(\frac{d}{2} \right) \frac{1}{2}$$

$$\theta_{Vmin}(d,h) \coloneqq \frac{1}{2} \arctan \left(\frac{d}{h}\right) \frac{1}{\deg} \qquad S_0(d,\theta,h) \coloneqq \frac{2.73 \cdot d}{\cos(\theta \cdot \deg) \cdot \sqrt{h + d \cdot \tan(\theta \cdot \deg)}}$$

For parabolic path: h = ad2 + bd, where h is y and d is x, Find the Launch Angle, given 2 pts.

$$a(d_1, d_2, h_1, h_2) := \frac{d_2 \cdot h_1 - d_1 \cdot h_2}{d_1^2 \cdot d_2 - d_2^2 \cdot d_1} \qquad b(d_1, d_2, h_1, h_2) := \frac{d_1^2 \cdot h_2 - d_2^2 \cdot h_1}{d_1^2 \cdot d_2 - d_2^2 \cdot d_1} \qquad m = 2a \cdot d + b \\ \theta(m) := -atan(-m) \cdot deg^{-1} = 0$$

Estimating Vault Distance and Speed after a motorcyclist ejection - Taro - A Rich

Assume vault speed = slide to stop speed

$$v_{\text{final}} := \sqrt{2 \cdot 80 \cdot \text{ft} \cdot 0.5g} = 34.591 \cdot \text{mph}$$

Final Velocity: Initial Velocity. acceleration, and distance

$$\mathbf{v}_f = \mathbf{v}_0 + \mathbf{a} \cdot \mathbf{t}$$
 $\mathbf{v}_f (\mathbf{v}_o, \mathbf{a}, \mathbf{d}) := \sqrt{\mathbf{v}_o^2 + 2\mathbf{a} \cdot \mathbf{d}}$